Breakdown of logical circuits in fungi

0
  • Michael, JC, Watkinson, SC, & Gooday, GW The mushrooms(Gulf Professional Publishing, 2001).

  • Myron Smith, L., Johann Bruhn, N. & James Anderson, B. The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356(6368), 428 (1992).

    ADSGoogle Scholar

  • Karana, E., Blauwhoff, D., Hultink, E.-J., Camere, S. As the material grows: A case study in designing (with) mycelium-based materials. international J.Des. 12119-136 (2018).

    Google Scholar

  • Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. Engineered mycelial composites from fungal biorefineries: A critical review. mater Of. 187108397 (2020).

    CAS Google Scholar

  • Cerimi K, Akkaya KC, Pohl C, Schmidt B & Neubauer P Fungi as source for new bio-based materials a patent review. Mushroom Biol. Biotechnology. 6(1), 1-10 (2019).

    Google Scholar

  • Adamatzky, A., Gandia, A., Ayres, P., Wösten, H., & Tegelaar, M. Adaptive fungal architectures. LINKs Series, 5:66-77.

  • Pelletier, MG, Holt, GA, Wanjura, JD, Bayer, E. & McIntyre, G. An evaluation study of mycelial-based acoustic absorbers grown on agricultural by-product substrates. industrial crops prod. 51480-485 (2013).

    CAS Google Scholar

  • Elsacker, E. et al. A comprehensive framework for fabricating mycelium-based lignocellulosic composites. Science. overall environment. 725138431 (2020).

    ADS CAS PubMedGoogle Scholar

  • Robertson, O. et al. Future of Fungi: A Review of Mycelial Biocomposites as an Ecological Alternative Insulation Material. DS 101: Proceedings of NordDesign 2020, Lyngby, Denmark, 12-14. August 2020, pages 1-13, (2020).

  • Yang, Z., Zhang, F., Still, B., White, M. & Amstislavski, P. Physical and mechanical properties of mushroom mycelium-based biofoam. J Mater. Civil. Closely. 29(7), 04017030 (2017).

    Google Scholar

  • Xing, Y., Brewer, M., El-Gharabawy, M., Griffith, G. & Jones, P. Cultivation and testing of mycelial stones as building insulation materials. IOP conf. Earth Environment Series. Science. 121022032 (2018).

    Google Scholar

  • Girometta, C. et al. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: A review. sustainability 11(1), 281 (2019).

    CAS Google Scholar

  • Dias, PP, Jayasinghe, LB & Waldmann, D. Investigation of Mycelium-Miscanthus Composites as Building Insulation Material. Results Mater. 10100189 (2021).

    Google Scholar

  • Fei WANG, Hong-qiang LI, Shu-shuo KANG, Ye-fei BAI, Guo-zhen CHENG and Guo-qiang ZHANG. The experimental study of mycelium/expanded perlite thermal insulation composite material for buildings. Science Technology and Engineering, 2016:20, (2016).

  • Cárdenas-R, JP Biomaterial for thermal insulation based on Hydrangea macrophylla. in the Bio-based materials and biotechnologies for eco-efficient construction, pp. 187–201. Elsevier, (2020).

  • Holt, GA et al. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material Evaluation study of selected blends of cotton by-products. J. Biobased Mater. bioenergy 6(4), 431-439 (2012).

    CAS Google Scholar

  • Sivaprasad, S., Sidharth Byju, K., Prajith, C., Jithin Shaju, Rejeesh, CR Development of a novel mycelial biocomposite material to replace polystyrene in packaging applications. Materials Today: Procedures, (2021).

  • Mojumdar, A., Behera, HT, Ray, L. Fungal mycelia-based material: An environmentally friendly alternative to synthetic packaging. Microbial Poly. See https://doi.org/10.1007/978-981-16-0045-6_6 (2021).

  • Adamatzky A, Nikolaidou A, Gandia A, Chiolerio A & Dehshibi MM Reactive fungal wearable. biosystems 199104304 (2021).

    CAS PubMedGoogle Scholar

  • Silverman, J., Cao, H. & Cobb, K. Development of mushroom spawn composites for footwear products. Cloth. Text. Resolution J 38(2), 119-133 (2020).

    Google Scholar

  • Appels, FVW The use of mushroom mycelium for the production of bio-based materials. PhD thesis, University of Utrecht (2020).

  • Jones, Mitchell, Gandia, Antoni, John, Sabu & Bismarck, Alexander. Leather-like material biofabrication with fungi. nat. Receive. 41-8 (2020).

    Google Scholar

  • Hitchcock, D., Glasbey, CA & Ritz, K. Image analysis of space-filling by networks: application to a fungal mycelium. Biotechnology. Technology. 10(3), 205-210 (1996).

    CAS Google Scholar

  • Giovannetti, M., Sbrana, C., Avio, L. & Strani, P. Patterns of underground plant connections produced by arbuscular mycorrhizal networks. New phytol. 164(1), 175-181 (2004).

    PubMedGoogle Scholar

  • Fricker, M., Boddy, L. & Bebber, D. Network organization of mycelial fungi. in the Biology of the fungal cell. The Mycota (Eds. Howard, RJ & Gow, NAR), Vol. 8. https://doi.org/10.1007/978-3-540-70618-2_13 (Springer, Berlin, Heidelberg, 2007).

  • Fricker, MD, Heaton, LLM, Jones, NS, & Boddy, L. The mycelium as a network. The Mushroom Kingdom, pp. 335–367, (2017).

  • Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L. & Picu, R.C. Morphology and mechanics of the fungal mycelium. Science. representative 7(1), 1-12 (2017).

    Google Scholar

  • Obert, M., Pfeifer, P. & Sernetz, M. Microbial growth patterns described by fractal geometry. J. Bacteriol. 172(3), 1180-1185 (1990).

    CAS PubMed PubMed CentralGoogle Scholar

  • Dhananjay Patankar, B., Tuan-Chi, L. & Oolman, T. A fractal model to characterize mycelial morphology. Biotechnology. Bioeng. 42(5), 571-578 (1993).

    Google Scholar

  • Boddy, L. & Bolton, RG Characterization of the spatial aspects of foraging of mycelial cord systems using fractal geometry. Mycol. resolution 97(6), 762-768 (1993).

    Google Scholar

  • Mihail, JD, Obert, M., Bruhn, JN & Taylor, SJ Fractal geometry of diffuse mycelia and rhizomorphs of Armillaria species. Mycol. resolution 99(1), 81-88 (1995).

    Google Scholar

  • Boddy, L., John Wells, M., Culshaw, C. & Donnelly, DP Fractal Analysis in Studies of Mycelium in Soil. geoderma 88(3), 301-328 (1999).

    ADSGoogle Scholar

  • Papagianni, M. Quantifying the fractal nature of mycelial aggregation in submerged cultures of Aspergillus niger. microb. cell fact. 5(1), 5 (2006).

    PubMed PubMed Headquarters Google Scholar

  • Adamatzky A, Tegelaar M, Wosten HAB, Powell AL, Beasley AE & Mayne R. On boolean gates in fungal colony. biosystems 193104138 (2020).

    PubMedGoogle Scholar

  • Siccardi, S. & Adamatzky, A. Actin quantum automata: communication and computation in molecular networks. Nano Commun. network 6(1), 15-27 (2015).

    Google Scholar

  • Verstraeten, D., Schrauwen, B., d’Haene, M. & Stroobandt, D. An experimental unification of reservoir computing methods. neural network 20(3), 391-403 (2007).

    CAS PubMed MATHGoogle Scholar

  • Lukoševičius, M. & Jaeger, H. Reservoir computing approaches for recurrent training of neural networks. computer science. rev 3(3), 127-149 (2009).

    MATH Google Scholar

  • Dale, M., Miller, JF, & Stepney, S. Reservoir Computing as a Model for In-Matterio Computing. In Advances in Unconventional Computing, pp. 533–571. Jumper, (2017).

  • Konkoli Z, Nichele S, Dale M & Stepney S Reservoir Computing with Computational Matter. In the: computational matter. Natural Computing series. (Eds. Stepney, S., Rasmussen, S. & Amos, M.) https://doi.org/10.1007/978-3-319-65826-1_14 (Springer, Cham, 2018).

  • Dale, M., Miller, JF, Stepney, S., & Trefzer, MA A substrate-independent framework for characterizing reservoir computers. Proceedings of the Royal Society A, 475(2226):20180723, (2019).

  • Miller, JF & Downing, K. Evolution in materio: looking beyond the silicon box. In Proceedings 2002 NASA/DoD Conference on Evolvable Hardware, pages 167-176. IEEE, (2002).

  • Miller, JF, Harding, SL & Gunnar Tufte, G. Evolution-in-materio: Further development of computation in materials. Evolution. intelligence 7(1), 49-67 (2014).

    Google Scholar

  • Stepney, S. Co-design of the computational model and computational substrate. In International Conference on Unconventional Computation and Natural Computation, pp. 5–14. Jumper, (2019).

  • Julian Miller, F., Simon Hickinbotham, J., Amos, M. In materio computation with carbon nanotubes. In Computational Matter, pp. 33-43. Jumper, (2018).

  • Julian Francis Miller. The Alchemy of Calculation: Designing with the Unknown. nat. Calculation. 18(3), 515-526 (2019).

    Math ScienceNet Google Scholar

  • Roelofs, G. & Koman, R. PNG: The Definitive Guide. O’Reilly & Associates, Inc., (1999).

  • Howard, PG The design and analysis of efficient lossless data compression systems. PhD thesis, Citeseer, (1993).

  • Deutsch, P. & Gailly, JL Zlib Specification for the Compressed Data Format Version 3.3. Technical Report, (1996).

  • Ziv, J. & Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Information theory 23(3), 337-343 (1977).

    MathSciNet MATH Google Scholar

  • Wolfram, S. Statistical Mechanics of Cellular Automata. Rev. Mod. Phys. 55(3), 601 (1983).

    ADS MathSciNet MATH Google Scholar

  • Martínez, GJ, Adamatzky, A. & McIntosh, HV Phenomenology of glider collisions in Rule 54 for cellular automata and associated logic gates. Chaos Soliton Fracture. 28(1), 100-111 (2006).

    ADS MathSciNet MATH Google Scholar

  • Martínez, GJ, Adamatzky, A, Stephens, CR & Hoeflich, AF Cellular Automaton Supercolliders. international J. Modern Phys. C 22(04), 419-439 (2011).

    SHOW MATH Google Scholar

  • Beasley AE, Abdelouahab M-S, Lozi R, Powell AL & Adamatzky A. Mem-fractive properties of fungi. arXiv preprint arXiv:2002.06413, (2020).

  • Share.

    Comments are closed.