Michael, JC, Watkinson, SC, & Gooday, GW The mushrooms(Gulf Professional Publishing, 2001).
Myron Smith, L., Johann Bruhn, N. & James Anderson, B. The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356(6368), 428 (1992).
Karana, E., Blauwhoff, D., Hultink, E.-J., Camere, S. As the material grows: A case study in designing (with) mycelium-based materials. international J.Des. 12119-136 (2018).
Google Scholar
Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. Engineered mycelial composites from fungal biorefineries: A critical review. mater Of. 187108397 (2020).
Cerimi K, Akkaya KC, Pohl C, Schmidt B & Neubauer P Fungi as source for new bio-based materials a patent review. Mushroom Biol. Biotechnology. 6(1), 1-10 (2019).
Google Scholar
Adamatzky, A., Gandia, A., Ayres, P., Wösten, H., & Tegelaar, M. Adaptive fungal architectures. LINKs Series, 5:66-77.
Pelletier, MG, Holt, GA, Wanjura, JD, Bayer, E. & McIntyre, G. An evaluation study of mycelial-based acoustic absorbers grown on agricultural by-product substrates. industrial crops prod. 51480-485 (2013).
Elsacker, E. et al. A comprehensive framework for fabricating mycelium-based lignocellulosic composites. Science. overall environment. 725138431 (2020).
Robertson, O. et al. Future of Fungi: A Review of Mycelial Biocomposites as an Ecological Alternative Insulation Material. DS 101: Proceedings of NordDesign 2020, Lyngby, Denmark, 12-14. August 2020, pages 1-13, (2020).
Yang, Z., Zhang, F., Still, B., White, M. & Amstislavski, P. Physical and mechanical properties of mushroom mycelium-based biofoam. J Mater. Civil. Closely. 29(7), 04017030 (2017).
Google Scholar
Xing, Y., Brewer, M., El-Gharabawy, M., Griffith, G. & Jones, P. Cultivation and testing of mycelial stones as building insulation materials. IOP conf. Earth Environment Series. Science. 121022032 (2018).
Google Scholar
Girometta, C. et al. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: A review. sustainability 11(1), 281 (2019).
Dias, PP, Jayasinghe, LB & Waldmann, D. Investigation of Mycelium-Miscanthus Composites as Building Insulation Material. Results Mater. 10100189 (2021).
Google Scholar
Fei WANG, Hong-qiang LI, Shu-shuo KANG, Ye-fei BAI, Guo-zhen CHENG and Guo-qiang ZHANG. The experimental study of mycelium/expanded perlite thermal insulation composite material for buildings. Science Technology and Engineering, 2016:20, (2016).
Cárdenas-R, JP Biomaterial for thermal insulation based on Hydrangea macrophylla. in the Bio-based materials and biotechnologies for eco-efficient construction, pp. 187–201. Elsevier, (2020).
Holt, GA et al. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material Evaluation study of selected blends of cotton by-products. J. Biobased Mater. bioenergy 6(4), 431-439 (2012).
Sivaprasad, S., Sidharth Byju, K., Prajith, C., Jithin Shaju, Rejeesh, CR Development of a novel mycelial biocomposite material to replace polystyrene in packaging applications. Materials Today: Procedures, (2021).
Mojumdar, A., Behera, HT, Ray, L. Fungal mycelia-based material: An environmentally friendly alternative to synthetic packaging. Microbial Poly. See https://doi.org/10.1007/978-981-16-0045-6_6 (2021).
Adamatzky A, Nikolaidou A, Gandia A, Chiolerio A & Dehshibi MM Reactive fungal wearable. biosystems 199104304 (2021).
Silverman, J., Cao, H. & Cobb, K. Development of mushroom spawn composites for footwear products. Cloth. Text. Resolution J 38(2), 119-133 (2020).
Google Scholar
Appels, FVW The use of mushroom mycelium for the production of bio-based materials. PhD thesis, University of Utrecht (2020).
Jones, Mitchell, Gandia, Antoni, John, Sabu & Bismarck, Alexander. Leather-like material biofabrication with fungi. nat. Receive. 41-8 (2020).
Google Scholar
Hitchcock, D., Glasbey, CA & Ritz, K. Image analysis of space-filling by networks: application to a fungal mycelium. Biotechnology. Technology. 10(3), 205-210 (1996).
Giovannetti, M., Sbrana, C., Avio, L. & Strani, P. Patterns of underground plant connections produced by arbuscular mycorrhizal networks. New phytol. 164(1), 175-181 (2004).
Fricker, M., Boddy, L. & Bebber, D. Network organization of mycelial fungi. in the Biology of the fungal cell. The Mycota (Eds. Howard, RJ & Gow, NAR), Vol. 8. https://doi.org/10.1007/978-3-540-70618-2_13 (Springer, Berlin, Heidelberg, 2007).
Fricker, MD, Heaton, LLM, Jones, NS, & Boddy, L. The mycelium as a network. The Mushroom Kingdom, pp. 335–367, (2017).
Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L. & Picu, R.C. Morphology and mechanics of the fungal mycelium. Science. representative 7(1), 1-12 (2017).
Google Scholar
Obert, M., Pfeifer, P. & Sernetz, M. Microbial growth patterns described by fractal geometry. J. Bacteriol. 172(3), 1180-1185 (1990).
Dhananjay Patankar, B., Tuan-Chi, L. & Oolman, T. A fractal model to characterize mycelial morphology. Biotechnology. Bioeng. 42(5), 571-578 (1993).
Google Scholar
Boddy, L. & Bolton, RG Characterization of the spatial aspects of foraging of mycelial cord systems using fractal geometry. Mycol. resolution 97(6), 762-768 (1993).
Google Scholar
Mihail, JD, Obert, M., Bruhn, JN & Taylor, SJ Fractal geometry of diffuse mycelia and rhizomorphs of Armillaria species. Mycol. resolution 99(1), 81-88 (1995).
Google Scholar
Boddy, L., John Wells, M., Culshaw, C. & Donnelly, DP Fractal Analysis in Studies of Mycelium in Soil. geoderma 88(3), 301-328 (1999).
Papagianni, M. Quantifying the fractal nature of mycelial aggregation in submerged cultures of Aspergillus niger. microb. cell fact. 5(1), 5 (2006).
Adamatzky A, Tegelaar M, Wosten HAB, Powell AL, Beasley AE & Mayne R. On boolean gates in fungal colony. biosystems 193104138 (2020).
Siccardi, S. & Adamatzky, A. Actin quantum automata: communication and computation in molecular networks. Nano Commun. network 6(1), 15-27 (2015).
Google Scholar
Verstraeten, D., Schrauwen, B., d’Haene, M. & Stroobandt, D. An experimental unification of reservoir computing methods. neural network 20(3), 391-403 (2007).
Lukoševičius, M. & Jaeger, H. Reservoir computing approaches for recurrent training of neural networks. computer science. rev 3(3), 127-149 (2009).
Dale, M., Miller, JF, & Stepney, S. Reservoir Computing as a Model for In-Matterio Computing. In Advances in Unconventional Computing, pp. 533–571. Jumper, (2017).
Konkoli Z, Nichele S, Dale M & Stepney S Reservoir Computing with Computational Matter. In the: computational matter. Natural Computing series. (Eds. Stepney, S., Rasmussen, S. & Amos, M.) https://doi.org/10.1007/978-3-319-65826-1_14 (Springer, Cham, 2018).
Dale, M., Miller, JF, Stepney, S., & Trefzer, MA A substrate-independent framework for characterizing reservoir computers. Proceedings of the Royal Society A, 475(2226):20180723, (2019).
Miller, JF & Downing, K. Evolution in materio: looking beyond the silicon box. In Proceedings 2002 NASA/DoD Conference on Evolvable Hardware, pages 167-176. IEEE, (2002).
Miller, JF, Harding, SL & Gunnar Tufte, G. Evolution-in-materio: Further development of computation in materials. Evolution. intelligence 7(1), 49-67 (2014).
Google Scholar
Stepney, S. Co-design of the computational model and computational substrate. In International Conference on Unconventional Computation and Natural Computation, pp. 5–14. Jumper, (2019).
Julian Miller, F., Simon Hickinbotham, J., Amos, M. In materio computation with carbon nanotubes. In Computational Matter, pp. 33-43. Jumper, (2018).
Julian Francis Miller. The Alchemy of Calculation: Designing with the Unknown. nat. Calculation. 18(3), 515-526 (2019).
Roelofs, G. & Koman, R. PNG: The Definitive Guide. O’Reilly & Associates, Inc., (1999).
Howard, PG The design and analysis of efficient lossless data compression systems. PhD thesis, Citeseer, (1993).
Deutsch, P. & Gailly, JL Zlib Specification for the Compressed Data Format Version 3.3. Technical Report, (1996).
Ziv, J. & Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Information theory 23(3), 337-343 (1977).
Wolfram, S. Statistical Mechanics of Cellular Automata. Rev. Mod. Phys. 55(3), 601 (1983).
Martínez, GJ, Adamatzky, A. & McIntosh, HV Phenomenology of glider collisions in Rule 54 for cellular automata and associated logic gates. Chaos Soliton Fracture. 28(1), 100-111 (2006).
Martínez, GJ, Adamatzky, A, Stephens, CR & Hoeflich, AF Cellular Automaton Supercolliders. international J. Modern Phys. C 22(04), 419-439 (2011).
Beasley AE, Abdelouahab M-S, Lozi R, Powell AL & Adamatzky A. Mem-fractive properties of fungi. arXiv preprint arXiv:2002.06413, (2020).