Best practices in lithium battery cell preparation and evaluation

0
  • Goodenough, JB & Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 22587-603 (2010).

    CAS article Google Scholar

  • Advances in battery technologies for electric vehicles. (Elsevier, 2015). https://doi.org/10.1016/C2014-0-02665-2.

  • Andre, D., Hain, H., Lamp, P., Maglia, F. & Stiaszny, B. Future high-energy-density anode materials from an automotive application perspective. J Mater. Chem. A 517174-17198 (2017).

    CAS article Google Scholar

  • Chen, S., Dai, F. & Cai, M. Opportunities and Challenges of High-Energy Lithium-Metal Batteries for Electric Vehicle Applications. ACS Energy Lett. 53140-3151 (2020).

    CAS article Google Scholar

  • Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and material costs for rechargeable lithium-based car batteries. nat. energy 3267-278 (2018).

    CAS article Google Scholar

  • Lensch-Franzen, C., Gohl, M., Schmalz, M. & Doguer, T. From cell to battery system – different cell formats and their system integration. MTZ Worldw. 8168-73 (2020).

    Article Google Scholar

  • Whittingham, MS Lithium Batteries and Cathode Materials. Chem. Rev. 1044271-4301 (2004).

    CAS article Google Scholar

  • Xu, K. Non-aqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 1044303-4417 (2004).

    CAS article Google Scholar

  • Arora, P. & Zhang, Z. Battery Separators. Chem. Rev. 1044419-4462 (2004).

    CAS article Google Scholar

  • Yang, Y., Zheng, G. & Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. rev 423018-3032 (2013).

    CAS article Google Scholar

  • Xiang, Y. et al. Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent advances. ChemSusChem 93023-3039 (2016).

    CAS article Google Scholar

  • Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in developing advanced Li-ion batteries: A review. energetic environment. Science. 43243-3262 (2011).

    CAS article Google Scholar

  • Lee, H., Yanilmaz, M., Toprakci, O., Fu, K. & Zhang, X. An overview of recent developments in membrane separators for rechargeable lithium-ion batteries. energetic environment. Science. 73857-3886 (2014).

    CAS article Google Scholar

  • Murray, V., Hall, D. S. & Dahn, J. R. A Academic Researcher’s Guide to Making Complete Button Cells. J. Electrochem. society 166A329-A333 (2019).

    CAS article Google Scholar

  • Hu, J. et al. Achieving highly reproducible results in graphite-based lithium-ion full button cells. joules 51011-1015 (2021).

    Article Google Scholar

  • Ruis, V Standards for Performance and Lifetime Evaluation of Electric Vehicle Batteries – Possible Performance Criteria for an Ecodesign Regulation. (2018). https://doi.org/10.2760/24743.

  • Zheng, G. et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium-sulfur batteries. Nano Lett. 131265-1270 (2013).

    CAS article Google Scholar

  • Marks, T., Trussler, S., Smith, AJ, Xiong, D. & Dahn, JR A Guide to the Fabrication of Lithium-Ion Coin Cell Electrodes for Academic Researchers. J. Electrochem. society 158A51 (2011).

    CAS article Google Scholar

  • Chen, S. et al. Critical parameters to evaluate button cells and pouch cells of rechargeable Li-metal batteries. joules 31094-1105 (2019).

    CAS article Google Scholar

  • Lange, BR et al. Enabling high-energy, high-voltage lithium-ion cells: standardization of coin cell assembly, electrochemical testing, and full-cell evaluation. J. Electrochem. society 163A2999-A3009 (2016).

    CAS article Google Scholar

  • Müller, V. et al. Effects of mechanical compression on the aging and expansion behavior of Si/C composite|NMC811 in different lithium-ion battery cell formats. J. Electrochem. society 166A3796-A3805 (2019).

    Article Google Scholar

  • Kim, H. et al. Failure mode of thick cathodes for Li-ion batteries: variation of the state of charge along the electrode thickness direction. electrochim. Act. 370137743 (2021).

    CAS article Google Scholar

  • Zheng, H., Li, J., Song, X., Liu, G. & Battaglia, VS A comprehensive understanding of the effects of electrode thickness on the electrochemical performance of lithium-ion battery cathodes. electrochim. Act. 71258-265 (2012).

    CAS article Google Scholar

  • Yang D, Li X, Wu N & Tian W Influence of moisture content on the electrochemical performance of a LiNi 1/3 Co 1/3 Mn 1/3 O 2 /graphite battery. electrochim. act 188611-618 (2016).

    CAS article Google Scholar

  • Andersson, AM et al. Surface characterization of electrodes from high-performance lithium-ion batteries. J. Electrochem. society 149A1358 (2002).

    CAS article Google Scholar

  • Meyer, AS & Boyd, CM Determination of water by titration with coulometrically generated Karl Fischer reagent. Anal. chem. 31215-219 (1959).

    CAS article Google Scholar

  • Schweiger, H.-G. et al. NMR determination of traces of water in lithium salts for battery electrolytes. J. Electrochem. society 152A622 (2005).

    CAS article Google Scholar

  • Sohn, B. et al. Effect of cathode/anode area ratio on electrochemical performance of lithium-ion batteries. J. Power Sources 243641-647 (2013).

    CAS article Google Scholar

  • Mussa, AS, Klett, M., Lindbergh, G. & Lindstrom, RW Effects of external pressure on the performance and aging of single-layer lithium-ion pouch cells. J. Power Sources 38518-26 (2018).

    CAS article Google Scholar

  • Salihoglu, O. & Demir-Cakan, R. Factors affecting proper function of a 3Ah Li-S pouch cell. J. Electrochem. society 164A2948-A2955 (2017).

    CAS article Google Scholar

  • Li, S. et al. Development of a High Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Advances. Adult Mater. 301706375 (2018).

    Article Google Scholar

  • Fang, C. et al. Pressure-matched lithium deposition and dissolution in lithium metal batteries. nat. energy 6987-994 (2021).

    CAS article Google Scholar

  • Share.

    Comments are closed.